Stochastic Iterative Learning Model Predictive Control based on Stochastic Approximation
نویسندگان
چکیده
منابع مشابه
Iterative Learning Control based on Stochastic Approximation ⋆
In this paper stochastic approximation theory is used to produce Iterative Learning Control (ILC) algorithms which are less sensitive to stochastic disturbances, a typical problem for the learning process of standard ILC algorithms. Two algorithms are developed, one to obtain zero mean controlled error and one to minimise the mean 2-norm of the controlled error. The former requires a certain kn...
متن کاملStochastic Point-to-point Iterative Learning Control Based on Stochastic Approximation
An iterative learning control algorithm with iteration decreasing gain is proposed for stochastic point-to-point tracking systems. The almost sure convergence and asymptotic properties of the proposed recursive algorithm are strictly proved. The selection of learning gain matrix is given. An illustrative example shows the effectiveness and asymptotic trajectory properties of the proposed approach.
متن کاملStochastic Model Predictive Control
Model Predictive Control (MPC) is a control strategy that has been used successfully in numerous and diverse application areas. The aim of the present article is to discuss how the basic ideas of MPC can be extended to problems involving random model uncertainty with known probability distribution. We discuss cost indices, constraints, closed loop properties and implementation issues.
متن کاملSurvey on stochastic iterative learning control
Iterative learning control (ILC) is suitable for systems that are able to repeatedly complete several tasks over a fixed time interval. Since it was first proposed, ILC has been further developed through extensive efforts. However, there are few related results on systems with stochastic signals, where by stochastic signal we mean one that is described by a random variable. Stochastic iterative...
متن کاملDeep Learning Approximation for Stochastic Control Problems
Many real world stochastic control problems suffer from the “curse of dimensionality”. To overcome this difficulty, we develop a deep learning approach that directly solves high-dimensional stochastic control problems based on Monte-Carlo sampling. We approximate the time-dependent controls as feedforward neural networks and stack these networks together through model dynamics. The objective fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2019
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2019.06.129